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SUMMARY

The boundary integral formulation of the solution to the Stokes equations is used to describe the
deformation of small compound non-Newtonian axisymmetric drops suspended in a Newtonian fluid
that is subjected to an axisymmetric flow field. The non-Newtonian stress is treated as a source term in
the Stokes equations, which yields an extra integral over the domains containing non-Newtonian
material. By transforming the integral representation for the velocity to cylindrical co-ordinates and
performing the integration over the azimuthal direction analytically, the dimension of the problem can be
reduced from three to two. A boundary element method for the remaining two-dimensional problem
aimed at the simulation of the deformation of such axisymmetric compound non-Newtonian drops is
developed. Apart from a numerical validation of the method, simulation results for a drop consisting of
an Oldroyd-B fluid and a viscoelastic material are presented. Moreover, the method is extended to
compound drops that are composed of a viscous inner core encapsulated by a viscoelastic material. The
simulation results for these drops are verified against theoretical results from literature. Moreover, it is
shown that the method can be used to identify the dominant break-up mechanism of compound drops
in relation to the specific non-Newtonian character of the membrane. Copyright © 1999 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Deformable particles, such as gas bubbles, liquid drops and biological cells, appear in a wide
range of technological and medical applications. Examples include advanced material process-
ing, food processing and pharmaceutical manufacturing. As the deformability of these particles
strongly determines the macroscopic properties of the material it composes, much research
emphasis has been put on the description of the deformation process of deformable drops (see
e.g. Rallison [1] and Stone [2] for a survey). If the drops are sufficiently small, the dynamics
of these drops can be analyzed through an investigation of the Stokes equations since the
corresponding Reynolds number is small enough to justify neglecting inertia forces. Most
theoretical work has been directed towards the case that the drop and its surrounding fluid
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consist of different Newtonian fluids in which the interface between the drop and the
surrounding fluid is considered infinitely thin and characterized by a constant surface tension.
The velocity field can, in these cases, be expressed in terms of a boundary integral over the
surface of the drop [3,4]. In this paper, this boundary integral approach is extended for
axisymmetric flow in two ways. First, non-Newtonian fluids are incorporated in the descrip-
tion, which gives rise to additional volume integrals. Secondly, compound drops are allowed
for, which are composed of multiple layers of (non-)Newtonian material. In this way, the
method can be used for non-Newtonian drops as well as for e.g. red blood cells or vesicles in
which the membrane is modelled as an interface of finite thickness with certain non-Newtonian
properties (Brunn [5] and Smeulders [6]). It will be shown that the specific non-Newtonian
character of the layers has a significant effect on the dynamics and break-up mechanism of the
drop.

The deformation of neutrally buoyant viscous drops with interfacial tension in viscous
extensional flows at low Reynolds number was first studied analytically by Taylor [7]. In his
analytical work he starts with the solution to the Stokes equation in terms of an expansion in
spherical harmonics (Lamb [8]). By approximating the shape of the drop in terms of spherical
harmonics one may find a first-order approximation of the deformation of the drop and the
viscosity of dilute suspension of drops. This technique was refined (Cox [9] and Barthès-Biesel
[10]) and extended to other situations, such as viscous drops surrounded by a viscoelastic shell
(Brunn [5]) or double concentric viscous drops (Stone and Leal [11]). An extensive study of the
effects of the interface properties of viscous drops on the rheology of a dilute emulsion was
performed by Oldroyd [12,13]. For this purpose, a so-called cell model was introduced, which
enables the study of this problem in the frequency domain. The linear character of the flow
problem in the frequency domain allowed Palierne [14] to extend the work of Oldroyd to linear
viscoelastic drops with interfacial tension. A different approach was taken by Roscoe [15] who
used the work of Jeffery [16] on solid ellipsoidal particles in a viscous flow to describe the
deformation of viscoelastic particles.

Apart from theoretical studies, the deformation of Newtonian drops in viscous extensional
flows at low Reynolds number was first studied numerically by Youngren [17] using a
boundary element method. For drops composed of Newtonian fluids alone, this method
involves only quantities at the boundaries and hence the dimension of the computational
problem is reduced by one in these applications. The method has extensively been used by
others as well in order to simulate the behaviour of Newtonian drops in simple flow fields.
Apart from improvements in the numerical method (Huang [18]), recent studies have tackled
more complicated flow problems (e.g. break-up of drops, Tjahjadi [19]) and incorporated
additional physical phenomena (e.g. the effects due to surfactants, Stone [20] and the elasticity
of the membrane, Li [27]). Recently, the boundary element method was also used to simulate
concentrated emulsions of viscous drops in shear flow (Xiofan Li et al. [21] and Loewenberg
and Hinch [22]) and double concentric viscous drops (Stone and Leal [11]).

In many applications, however, the drop consists of a non-Newtonian fluid. Examples
include polymer blends, suspensions of vesicles and biological fluids such as blood. The
development of the boundary integral method in these cases is much more complicated due to
the domain integral that arises from the non-Newtonian contributions. This implies the
introduction of a grid covering the layers of the drop containing non-Newtonian fluids, next
to the definition of discrete points on the interface, and adds considerably to the numerical
cost of simulations of compound non-Newtonian drops. However, compared with a more
direct (finite difference) discretization of the Stokes equations, which would also require a grid
covering the much larger Newtonian region exterior to the drop, the boundary integral method
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for non-Newtonian drops has a number of important advantages. The incompressibility of the
fluids is fully incorporated into the expression for the velocity field and does not require some
sort of ‘pressure-correction’ as occurs in many direct numerical methods for simulating
unsteady incompressible flows. The boundary integral method is also more flexible and
accurate with respect to modelling the boundary geometries and boundary conditions. In
particular, the conditions on the solution at infinity are explicitly taken care of in the boundary
integral method, whereas a suitable but approximate condition at a finite distance needs to be
introduced in combination with a finite difference method. In addition, the boundary integral
method is especially suited for simulating time-dependent problems with moving boundaries.
Moreover, in several applications the region containing a non-Newtonian fluid forms only a
small portion of the flow problem, e.g. a vesicle in which the drop is formed by a Newtonian
fluid that is encapsulated by a non-Newtonian lipid bilayer [6], and the boundary integral
method can be used effectively. Bush [23,24] adopted the boundary element method to analyze
extrusion experiments with non-Newtonian fluids. The extension of the method to non-Newto-
nian drops is valid provided certain assumptions on the smoothness of the non-Newtonian
stress tensor are satisfied. These were numerically verified for a two-dimensional drop [25] and
for a three-dimensional axisymmetric drop [26]. In the current paper, the extension to
compound non-Newtonian drops immersed in a Newtonian fluid in axisymmetric flow is
considered. The method is illustrated by comparing simulation results for non-Newtonian
drops with theoretical results from literature.

The organization of this paper is as follows. In Section 2, the governing equations are
presented and the velocity field is expressed in terms of a domain integral involving the
non-Newtonian stress tensor and a boundary integral arising from the Newtonian contribu-
tions. Section 3 is devoted to the numerical method used to simulate the deformation of a
compound drop. Simulation results for both Newtonian and non-Newtonian compound drops
are presented in Section 4. Finally, the findings are summarized in Section 5.

2. GOVERNING EQUATIONS

This section presents the basic equations governing Stokes flow of compound non-Newtonian
drops and arrives at the fundamental expression for the velocity field corresponding to
axisymmetric deformation processes.

An isotropic axisymmetric compound non-Newtonian drop placed in an unbounded Newto-
nian fluid with viscosity h, which is subjected to a linear elongational flow is considered. The
axis of symmetry of the drop is assumed to coincide with the axis of symmetry of the external
flow field, which is defined by:

u1
�=Gx1, u2

�= −
1
2

Gx2, u3
�= −

1
2

Gx3, (2.1)

with uj
� the jth component of the velocity field with respect to a Cartesian co-ordinate frame

{e1, e2, e3} and G is the magnitude of the flow. The compound drop consists of K concentric
layers, each containing some (non-)Newtonian material. The volumes occupied by the un-
bounded Newtonian fluid outside the drop and the different layers, counted from the outside
to the inside, are denoted by V (0) and V (1), V (2), . . . , V (K) respectively (see Figure 1). Along the
interface S (l) between the domains V (l−1) and V (l), l=1, . . . , K, there acts a constant
interfacial tension s (l). The interface S (l) corresponds to the outer drop interface. The fluid is
incompressible and buoyancy is considered to be absent, i.e. it is assumed that the densities of
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all fluids composing the drop are equal. The initial configuration of the drop is taken to be a
set of concentric spheres with radii R (l), l=1, . . . , K. Throughout the work, dimensionless
variables will be used: all lengths are scaled with the initial outer drop radius R (1)=a,
velocities by aG and viscosities by h (Li et al. [27]). In changing to dimensionless variables it
is convenient to introduce the following dimensionless parameters:

C (l)=
hGa
s (l) , l (l)=

h (l)

h
and k (l)=

R (l)−R (l+1)

a
; l=1, . . . , K, (2.2)

where C (l) is the capillary number of the lth interface, which is a measure of the ratio between
the viscous and interfacial tension stresses. The parameter l (l) is the ratio between the viscosity,
h (l) in the lth domain and the exterior viscosity h and k (l) are the ratio of the thickness of the
undeformed spherical layer V (l) and the outer radius of the drop, where for convenience
R (K+1)=0 is introduced. In order to characterize the degree of distortion of the interfaces due
to the external velocity field, one commonly defines a deformation parameter D (l) as:

D (l)=
rmax

(l) −rmin
(l)

rmax
(l) +rmin

(l) ; l=1, . . . , K, (2.3)

where rmax
(l) and rmin

(l) denote the longest and shortest principal axes of the lth deformed
interface.

The flow in and around a compound non-Newtonian drop as introduced above is governed
by the Stokes equations if the Reynolds number Re= (ra2G)/h (with r being the density) is
sufficiently small (Pozrikidis [28]). In particular, the basic equations read:

(juj=0; (jpij=0, (2.4)

with pij the total stress tensor and (j=(/(xj. In Equation (2.4), as in the rest of this paper, the
summation convention is adopted that implies summation over repeated indices. The Stokes
equations given above are further supplemented with suitable matching conditions at the
interfaces S (l) and asymptotic conditions as �x ���. As the different layers of the drop can
consist of different types of non-Newtonian materials, it is convenient to distinguish between
a set of local stress tensors p ij

(l), l=1, . . . , K, corresponding to the total stress tensor in the
domain V (l), i.e. p ij

(l)=pij if x�V (l). The superscript (l) will be used for the other flow quantities
as well to indicate the domain of definition.

In the domain V (l) the total stress tensor pij is decomposed as:

p ij
(l)= −dijP (l)+l (l)g; ij

(l)+ t̃ ij
(l), i=1, . . . , 3, (2.5)

where P (l) is the isotropic pressure field and g; ij
(l) the rate of strain tensor:

g; ij
(l)=(iu j

(l)+(ju i
(l).

Figure 1. Schematic illustration of the different domains and interfaces.
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The non-Newtonian part of the stress tensor t̃ ij
(l) in (2.5) obeys a certain constitutive equation

that describes the non-Newtonian character of the fluid motion. In this paper, focus is on the
Maxwell model and a specific elastic model, although the method presented here can be
extended to quite general rheological models. The Maxwell model finds its origin in polymer
rheology and contains two parameters: a relaxation time tp

(l) and the polymer contribution to
the zero shear rate viscosity hp

(l) [29]. The constitutive equation for this model is given by:

mp
(l)Dtt̃ ij

(l)+ t̃ ij
(l)=lp

(l)g; ij
( j), (2.6)

where Dt denotes the upper convected time derivative (Bird [29]), mp
(l)=Gtp

(l) the dimensionless
relaxation time and lp

(l)=hp
(l)/h. The total stress tensor p ij

(l) for this model corresponds to the
well-known Oldroyd-B model (Bird [29]). The constitutive equation for the elastic model
considered here is given by:

t̃ ij
(l)=c1

(l)Bij+c2
(l)Bij

−1, (2.7)

where c1
(l) and c2

(l) are arbitrary constants. In expression (2.7), Bij is the so-called left
Cauchy–Green strain tensor, which is defined as:

Bij=
(xi

(Xl

(xl

(Xj

, (2.8)

where x describes the present and X the initial configuration of the material. The total stress
tensor p ij

(l) for this model is called the viscoelastic model for which the authors focus on two
special cases. In the first case, identified as viscoelastic I, they set c2

(l)=0, whereas in the second
case c1

(l)=0, which is referred to as viscoelastic II. In the literature, the first model is also called
an ideal rubber model, in which c1

(l) is proportional to the number of cross-links in the rubber
material (Bird [29]).

The identification of the non-Newtonian stress contribution to p ij
(l) is not unique. This can

be used to simplify the subsequent formulation by incorporating a part of the Newtonian stress
into the non-Newtonian stress. In particular, by redefining the non-Newtonian stress as:

t̃ ij
(l)� t̃ ij

(l)+ (l (l)−1)g; ij
(l),

l (l)=1 can be used in (2.5) without loss of generality (Toose et al. [25,26]). In the remainder
of the paper, the redefined non-Newtonian stress tensor will be referred to as the extra stress
tensor. Assuming that the Reynolds number is small, the fluid motion in the lth domain is
governed by the inhomogeneous Stokes equations:!( jju i

(l)−(iP
(l)= −(jt̃ ij

(l)

( ju j
(l)=0.

(2.9)

The velocity and the total stress tensor satisfy the following matching and asymptotic
conditions:![ui ]S (l)=0, C (l)[pijnj ]S (l)=ni

(l)(jn j
(l), for l=1, 2, . . . , K,

ui�ui
�, as �x ���,

(2.10)

where n (l) is the outward unit normal on S (l), (jn j
(l) is the boundary curvature and [ · ]S(l) denotes

the jump of the quantity between the brackets over the interface S (l) counted in the direction
n (l):

[ f ]S (l)= f (l)(x)− f (l−1)(x), (x)�S (l). (2.11)
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As the time dependence does not appear explicitly in (2.9), a kinematic constraint is used that
describes the fluid motion in the different domains. The motion of the domain V (l) (and its
boundaries) is modelled by considering the domain as a set of material points. The trajectories
of these points can be followed using a Lagrangian representation of the velocity:

dtxi=xi
(l)(x), Öx�V (l)(t), (2.12)

with dt the material time derivative. For the evolution, Equations (2.6) and (2.12) initial
conditions need to be specified. For the interfaces S (l), the authors start with a spherical shape,
whereas for the non-Newtonian contribution to the stress tensor, they assume an isotropic
stress distribution:

t̃ij(0)=Qdij, (2.13)

with Q being constant.
Assuming that the non-Newtonian stress tensor is known at time t, and interpreting the

right-hand-side of (2.9) as a source term, a solution for the velocity at time t can be
constructed in terms of boundary integral equations (Lorentz [3]). Following Ladyzhenskaya
[4], it can be shown that the integral representation for the velocity is given by (Toose et al.
[26]):

uk(x)=uk
�(x)+ %

K

l=1

&
V (l)

Jik(r)(jt̃ ij
(l)(y) dy+ %

K

l=1

&
S (l)

Jik(r)qi
(l)(y) dSy, (2.14)

with r=x−y, Jik(r) being Green’s function for the Stokes problem [3] and qi
(l) a surface force

that is defined as:

qi
(l)= [t̃ij ]S (l)nj

(l)−
1

C (l) ni
(l)(jn j

(l).

From the latter definition it can be seen that the interfacial tension and the discontinuity of the
extra stress tensor across the surface S (l) lead to the surface force qi

(l).
The flow problem defined above remains axisymmetric in time, and hence one can reduce

the dimension of the computational problem by transforming the integral equation (2.14) to
cylindrical co-ordinates (Toose et al. [26]). To perform this transformation it is convenient to
define cylindrical co-ordinates:

Í
Á

Ä

x1= x̄1,
x2= x̄2 cos(x̄3),
x3= x̄2 sin(x̄3),

(2.15)

where x̄1, x̄2 and x̄3 indicate the axial, radial and azimuthal components respectively. Observe
that (x̄1, x̄2, x̄3) are used instead of the more common (x, r, f) in view of the summation
convention. In the sequel, corresponding components with respect to cylindrical co-ordinates
are denoted with an overbar.

By transforming the integral expression (2.14) to cylindrical co-ordinates and performing the
integration over the azimuthal direction analytically, the following integral equation is
obtained [26]:

ūa(x̄)= ūa
�(x̄)+ %

K

l=1

&
V( (l)

Ma
b(r̄)(( gt̄̃bg

(l) (ȳ)ȳ2 dȳ2 dȳ1+ %
K

l=1

&
S( (l)

Ma
b(r̄)q̄b

(l)(ȳ)ȳ2 dly, (2.16)
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where V( (l) and S( (l) are the integration domains in cylindrical co-ordinates, which correspond to
V (l) and S (l) respectively. In the expression above, dly={1+ ((1ȳ2)2}1/2 dȳ1 is the differential
arclength, Ma

b(r̄) the transformed Green’s function and (( gt̄̃bg
(l) (ȳ) the divergence of the extra

stress tensor in cylindrical co-ordinates, which is defined as:

(( gt̄̃bg
(l) (ȳ)=gab

�
(at̄̃bg

(l) −
! l

ba

"
t̄̃ lg

(l)−
! l

ga

"
t̄̃ bg

(l)�,

where the coefficients
! l

ba

"
are the Christoffel symbols of the first kind and gab is the

contravariant metric tensor of the transformation [29]. In expression (2.16), the three-dimen-
sional problem is reduced to a two-dimensional one. The presence of the non-Newtonian
stress, however, makes it impossible to reduce the problem to one dimension as is possible for
a purely Newtonian drop [11]. This implies that the computational effort required to solve
non-Newtonian problems is considerably higher than for corresponding Newtonian problems.
However, since only the volume of the drop needs to be discretized an efficient method can be
arrived at compared with a conventional finite difference method.

With Equation (2.16), the authors have expressed the solution for the velocity field in the
entire flow domain in terms of boundary and domain integrals, provided that the non-Newto-
nian stress tensor and the shape of the interface are given. The next section describes the
complete method for solving the full time-dependent problem and show how the integral
equation (2.16) is incorporated in this method.

3. NUMERICAL METHOD

In this section, the numerical method used to evaluate the boundary and domain integrals, the
non-Newtonian stress tensor and the evolution of all surfaces S (l), l=1, . . . , K are given in
detail. In Section 3.1, the complete simulation method for the evolution of a drop consisting
of K concentric layers of (non-)Newtonian material is described. The description of the
geometry is provided in Section 3.2. The numerical method to calculate the velocity field, i.e.
the evaluation of (2.16) is provided in Section 3.3. In Section 3.4, the time integration of the
evolution equations (2.6) and (2.12) is presented.

3.1. Numerical algorithm

In anticipation of the numerical evaluation of the boundary integral formulation, a set of
discrete collocation points is introduced in the internal domains V (l) and on the interfaces S (l).
Using these discrete points, boundary elements are introduced to describe the shape of the
interfaces and internal grid cells to cover the internal domains V( (l). In order to describe the
state of the drop, both the non-Newtonian stress and the velocity need to be specified at these
collocation points. At the start of the simulation, the stress is given by its initial conditions,
whereas the velocity corresponding to the initial stress can be calculated using the boundary
integral formulation for the velocity.

The complete procedure used to simulate the evolution of the non-Newtonian axisymmetric
drop can be sketched as follows. Using the velocity given at time t and the evolution equation
(2.12), one can calculate the new positions of the collocation points, and consequently the
shape of the interfaces of the drop at t+Dt. Moreover, depending on the non-Newtonian
model chosen, you either integrate (2.6) in time or calculate (2.7) explicitly in order to obtain
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the non-Newtonian stress tensor at the new time level. With this new stress tensor and shape
of the interfaces, a new velocity field at time level t+Dt can be calculated from (2.16). At this
point, all the elements that describe the state of the drop, i.e. the collocation points describing
the shape of the drop and the velocity and the non-Newtonian stress at these points, have
advanced one time step. Repeating this explicit time integration procedure gives the evolution
of the stress tensor, the velocity field and the shape of all the boundaries S( (l).

After imposing the initial condition for the non-Newtonian stress and the interfaces and
after calculating the velocity field corresponding to this initial geometry and stress, the full
algorithm can be summarized as follows:

1. update positions of the collocation points by integrating (2.12) over one time step to yield
S( (l)(t+Dt), l=1, . . . , K,

2. calculate the stress tensor at t+Dt by solving (2.6) given ūa at time t or by evaluating (2.7)
using the new positions at time t+Dt,

3. calculate the velocity field at t+Dt using (2.16) given t̄̃bg and S( (l) from steps 1 and 2.

In the next three subsections, the representation of S (l) and V (l), the calculation of the velocity
field and the time integration of both the non-Newtonian stress tensor and the boundaries will
be discussed respectively.

3.2. Geometry description

The numerical implementation of the integrals in (2.16) requires an accurate representation
of the interfaces S( (l) into Nb

(l) boundary elements and the subdivision of the internal domains
V( (l) into N c

(l) internal cells. For reasons of convenience, the superscript (l) is dropped whenever
possible in this section.

Since the curvature of the interface is required in order to calculate the surface force q̄,
higher-order boundary elements are used to represent the interfaces, whereas for the internal
cells adopt quadrilateral elements are adopted. In order to be able to use standard integration
techniques for the calculation of the domain integral, these quadrilateral elements are mapped
to a standard square element using a bilinear transformation (Farin [30]):

X( (s1, s2)=A( 1(1−s1)(1−s2)+A( 2s1(1−s2)+A( 3s1s2+A( 4(1−s1)s2, (3.1)

where A( 1, A( 2, A( 3 and A( 4 are the vertices of the quadrilateral element and s1 and s2 are the
local co-ordinates of the corresponding standard element. For the higher-order boundary
elements, piecewise C2 cubic B-spline elements are used (DeBoor [31] and Farin [30]). The use
of cubic B-spline elements requires a suitable parametrization of the curve along the colloca-
tion points, which is obtained with a chord length parametrization:

6 [0]=0,

6 [i ]=6 [i−1]+x̄i− x̄i−1, i=1, . . . , Nb,

where x̄i is the ith collocation point on the interface S. On this set of nodes a cubic B-spline
curve s̄ is introduced as (DeBoor [31]):

s̄(6)= %
Nb−1

j= −3

d( jBj(6), (3.2)

where Bj(6) is a cubic B-spline and {d( j} is the control vertices of the B-spline curve such that
s̄(6 [i ])= x̄i. It is noted that this interpolation problem can be fully specified if the symmetry of
the drop is taken into account. The interpolation problem for s̄(6) leads to a sparse matrix
problem for {d( j}, which is solved using a band matrix solver.
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From the control vertices {d( j}, first- and second-order derivatives, as well as points on the
interface S, can be calculated using the DeBoor scheme [31]. The advantage of the DeBoor
scheme is that you only use combinations of these control vertices, and do not have to evaluate
the B-spline functions explicitly. From the first derivatives of the B-spline curve s̄, the
components of the normal vector are calculated using:

n̄1(6)= −
1
J
(6s̄2, n̄2(6)=

1
J
(6s̄1,

where J is the differential arclength of the curve:

J(6)=
((6s̄1)2+ ((6s̄2)2 . (3.3)

The curvature (( an̄a of the interface S( of the drop is equal to the sum of the values of the
curvatures in two arbitrary but mutually perpendicular directions. In case of an axisymmetric
body described by cylindrical co-ordinates, it is most convenient to consider the curvatures in
the meridian and azimuthal directions:

(( an̄a(6)=
1

(J)2 {(66s̄1n̄1−(66s̄2n̄2}+
)n2

s̄2

)
,

where a signed curvature [30] has been used for the meridian direction.

3.3. Calculation of the 6elocity

In order to calculate the velocity field, the integral equation (2.16) has to be solved at all the
collocation points. If viscosity ratios in the layers differ from 1, a part of the Newtonian stress
is incorporated into the non-Newtonian stress by redefining the non-Newtonian stress tensor
as described in Section 2. However, by this procedure, the extra stress tensor becomes an
explicit function of the velocity, which implies that (2.16) is solved iteratively at each time step.
In this iteration, a trial velocity field that is used to calculate the Newtonian part of the extra
stress tensor is assumed. Application of (2.16) yields a new velocity field, which serves as the
trial velocity field for the next iteration step. This iteration procedure is applied, until the
residual R (n) obtained after n iterations is smaller then a prespecified small number. The
residual is defined as the discrete L2 norm of the difference in the velocity at all collocation
points in two successive iterations:

R (n)=ū (n)− ū (n−1)! 1
Np

%
Np

i=1

�ū i
(n)− ū i

(n−1)�2"1/2

, (3.4)

where ū (n) is the velocity in the nth iteration level and Np is the total number of collocation
points. Computations showed that the iteration process can be stopped if the residual is
smaller than 10−6; more iterations do not effect the results. To reduce the required number of
iterations, the initial trial velocity is set equal to the converged velocity obtained in the
previous time step. In case all viscosities ratios l (l) are equal to 1, the calculation reduces to a
single step of this iteration procedure.

The velocity is computed at the collocation points, taken as the knots of the B-spline curve
for the interfaces and as the vertices of the internal cells, using the integral expression (2.16).
With the discretization of the boundaries and internal domains described above, one can
rewrite (2.16) as:

ūa(x̄): ūa
�(x̄)+ %

K

l=1

%
Nc

(l)

m=1

I1(x̄ ; V( m
(l))+ %

K

l=1

%
Nb

(l)

m=1

I2(x̄ ; Sm
(l)), (3.5)

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 30: 653–674 (1999)



E.M. TOOSE ET AL.662

where I1(x̄ ; V( m
(l)) and I2(x̄ ; S( m

(l)) are integrals over the mth internal cell and the mth boundary
element corresponding to the lth layer and interface respectively. Observe that I1(x̄ ; V( m

(l))=0
in case the lth layer consists of a Newtonian fluid and l (l)=1. As the method to calculate the
domain and interface integrals differ, both contributions are discussed separately, starting with
the interface integral.

Using the spline curve s̄ (l) representation of the interface S( (l) one can rewrite I2(x̄ ; S( m
(l)) as:

I2(x̄ ; S( m
(l))=

&
S( m(l)

Ma
b(r̄)n̄b

(l)(ȳ)ȳ2 dly=
& 6(l)[m+1]

6 (l)[m]

Ma
b(r̄)n̄b

(l)(6)s̄2
(l)(6)J (l)(6) d6.

Green’s function Ma
b(r̄) contains a logarithmic singularity as r tends to zero. This implies that

I2(x̄ ; S( m
(l)) involves a singular integrand if x̄ is located within the integration interval S( m

(l). A
standard procedure used in the literature is to distinguish between regular and singular
contributions (Toose et al. [26]). For the regular part, a standard quadrature rule is used,
whereas the singular contributions are treated in a special manner. In this paper, the
singularity in the integrand is removed in a uniform way that does not require a distinction
between regular and singular contributions. To that end a quadratic transformation is used
(Telles [32]):

6(v)=av2+bv+c. (3.6)

The constants a, b and c in (3.6) are determined such that the following conditions are met:

6(−1)=6 (l)[m ], 6(1)=6 (l)[m+1],
(6

(v

)
6̃ (l)

=0. (3.7)

where 6̃ (l) is defined as:

6̃ (l)={6 (l)�6 (l)� x̄− s̄ (l)(6̃ (l))=minimal}.

Transformation of (3.6) leads to:

I2(x̄ ; S( m
(l))=

& 1

−1

Ma
b(r̄)n̄b

(l)(6(v))s̄2
(l)(6(v))J (l)(6(v))(v6 dv. (3.8)

It is noted that the Jacobian (v6 removes the singularity or quasi-singularity if x̄ is located
either in or outside the integration interval. The removal of the quasi-singularity leads to a
higher accuracy, which is especially useful for drops with very thin layers. The resulting
transformed integral in (3.8) is evaluated numerically using Gauss quadrature (Patridge [33]
and Evans [34]).

In the remaining part of this section, the numerical evaluation of the domain integral is
discussed. The domain integral I1(x̄ ; V( m

(l)) can be written as:

I2(x̄ ; V( m
(l))=

&
V( m

(l)

Ma
b(r̄)(( gt̄̃bg

(l) (ȳ)ȳ2 dȳ2 dȳ1

=
& 1

0

& 1

0

Ma
b(r̄)(( gt̄̃bg

(l) (X( (s1, s2))X( 2(s1, s2)JB
(l)(s1, s2) ds2 ds1,

where the bilinear representation (3.1) of the mth quadrilateral element has been used and the
Jacobian JB

(l) is given by:

JB
(l)=det

�(X0 a(s1, s2)
(sb

�
.
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Unlike the interface integrals, the authors now distinguish between two cases; (a) the internal
cell does not contain the point x̄ and (b) the internal cell does contain the point x̄. In case (a),
the domain integrand is regular and a normal Gauss quadrature is used to evaluate the
integral. In case (b), the integrand is singular and a special treatment of the singularities in the
kernels is required. To remove the singularity, the same quadratic transformation is used as
was used for the boundary integral for both integration variables s1 and s2. After the removal
of the singularity, a normal Gauss quadrature is used in both integration directions to evaluate
the integral numerically.

With these numerical techniques, the authors have devised a second-order-accurate method
to calculate the velocity of the stationary problem (2.16) in all collocation points. In the next
section, the coupling of this solution with the time-dependent problem is discussed.

3.4. Time integration

In this section, the method to find the non-Newtonian stress tensor and the shape of the
interface S( (l) at the new time level are discussed.

Updating the shape of the interface and the grid covering the lth layer V( (l) requires the
calculation of the position of all the collocation points at the new time level. This calculation
can be performed by time integration of (2.12) with an Euler forward scheme:

x̄i(tn+1)= x̄i(tn)+Dtūi, (3.9)

with tn=nDt, where Dt is a constant time step and ūi is the velocity at the ith collocation point
x̄i. Moving the grid points in this way, however, may lead to a clustering of both internal and
boundary grid points in certain regions and hence a highly deformed grid develops, leading to
inaccurate results. The clustering arises directly from the fact that there are no restrictions on
the stress tensor in tangential direction implying that the points can move freely along the
interface in the direction of the external velocity field. To prevent the clustering of the
collocation points, the boundary points are redistributed at every time step. To this end an
auxiliary set of collocation points ȳi is introduced at the interface by:

ȳi(tn+1)= ȳi(tn)+Dt(ūi+a i
(l)t( i(l)), ȳi� s̄ (l), (3.10)

where t( i is the unit tangent vector along the lth interface (no summation over the index i ). The
coefficients a i

(l) are determined such that:

ȳi+1− ȳi((( gn̄ g
j(ȳi)+(( gn̄ g

j(ȳi+1)),

is constant for all i at the new time level. By using this grid movement scheme, the points are
redistributed in such a way that areas with high curvature have a somewhat higher concentra-
tion of grid points then areas with low curvature. The interior collocation points are found
subsequently by generating a new grid at each time step. This is done by interpolation between
the new auxiliary interface points on the interfaces S( (l) and S( (l+1). For a layer consisting of a
viscoelastic model, however, one simply uses the Euler scheme (3.9), since the non-fading
elasticity of the stress tensor compensates the viscous stress in the tangential direction, which
prevents clustering of the collocation points.

The new non-Newtonian stress tensor in the numerical algorithm is obtained either by
explicitly evaluating the stress (2.7) at the new time level or by integration of the constitutive
equation (2.6), depending on the chosen model. In order to calculate the stress for the
viscoelastic model, you need to evaluate the Cauchy–Green tensor (2.8), which requires the
derivatives of the deformed grid with respect to a reference grid. For the reference grid, the
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grid at the initial time level, where the partial derivatives are evaluated using a second-order-
accurate finite difference scheme, is used. Details concerning finite difference methods for
curvilinear co-ordinates can be found in Thompson [35]. In case the non-Newtonian stress
tensor is prescribed by a differential constitutive equation, the stress is integrated in time. To
perform this integration for the Maxwell model, one has to evaluate the upper convected time
derivative using a partial or a material time derivative. The use of the partial time derivative,
however, leads to a convective term that is somewhat difficult to calculate. For this problem
it is more convenient to use the material time derivative that does not require an explicit
calculation of the convective term. This implies that the new non-Newtonian stress tensor t̄̃bg

will be defined on the grid that is convected according to (3.9). Integration of (2.6) with an
Euler forward scheme leads to:

t̄̃bg(tn+1)= t̄̃bg(tn)+Dt(g nm[(( nūb(tn)t̄̃mg(tn)+ t̄̃bn(tn)(( mūg(tn)]+R( bg(tn)), (3.11)

with g nm the metric tensor and R( bg given by:

R( bg(tn)=
l (p)

m
((( būg(tn)+(( gūb(tn))−

1
m

t̄bg
NN(tn). (3.12)

The covariant derivative (( b in (3.11) and (3.12) is defined as [29]:

(( būg=
(ūg

(x̄b
−
! j

gb

"
ūj, (3.13)

As an alternative to the first-order Euler scheme, a second- or higher-order Runge–Kutta
scheme can be used.

Due to the Lagrangian approach the new stress tensor t̄̃bg(tn+1) resulting from (3.11) is
defined on the grid whose positions are given by (3.9). In order to find it on the new grid ȳi

the stress tensor is interpolated by:

t̄̃bg(ȳi):
1

%
j�J

1/(Dij)2

%
j�J

t̄̃bg(x̄j)
(Dij)2 , (3.14)

with Dij= �ȳi− x̄j � and the summation j�J involves all the indices of the nearest neighbours of
the grid point ȳi. To ensure that this interpolation is sufficiently accurate, a time step
restriction is introduced:

Dt=o min
n

!Dx̄n

ūn

"
, (3.15)

where Dx̄n is the shortest side of the nth internal cell, ūn the mean velocity over this element
and e is of the order 0.1.

4. RESULTS AND DISCUSSION

This section presents the results of numerical calculations to validate and illustrate the method.
For the validation of the numerical method a grid refinement study is performed and the
numerical results are compared with available analytical results known from the literature.

Although the method can be used for drops with many layers, here focus is on drops with
either one or two layers (i.e. K=1 or 2 respectively). The one layer drop is discussed in Section
4.1, whereas the results for the two layer drop are presented in Section 4.2. In order to remove
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Figure 2. The velocity profile and grid of a single layer viscous drop with l (1)=1 at C (1)=0.1. In the lower part of
the figure the vortices that are present in the velocity profile are drawn schematically.

the effects of the deformation history of the drop, the relaxed state of the non-Newtonian
stress tensor at t=0 (i.e. Q=0 in Equation (2.13)) is used.

4.1. Singe layer non-Newtonian drop

In this section, the authors study the response of an axisymmetric drop containing an
Oldroyd-B fluid or a viscoelastic material to an elongational flow. Before turning to the
validation of the method, a typical example of a deformed drop and the corresponding velocity
field is shown.

In Figure 2, a vector plot of the steady state velocity field of a fluid-like drop (i.e. viscous
or Oldroyd-B drop) at C=0.1 is drawn. In the velocity field, one can distinguish two vortices,
which are also drawn schematically in the lower part of the figure. For the viscoelastic drops,
no vortices exist since the velocity becomes zero in the steady state due to the non-fading
elasticity of the viscoelastic material.

Investigation of the order of accuracy of the numerical method is performed using grid
refinement (Toose [25]). Suppose you have numerically obtained the solution at a certain time
to on a given grid. The deformation D(t0) should asymptotically converge to its analytical
value at a specific rate in case the grid is refined. The order of accuracy of the method can be
obtained from the values of D(t0) on subsequent refinement levels of the grid. Especially the
values of the convergence rate ri, defined by:

ri=
D(i+1)−D(i)

D(i+2)−D(i+1)

, for i]0, (4.1)

on the set of grids is of importance in this respect. Here D(i) is the deformation of the drop on
the ith refinement level at time t0. The grid is usually refined with a Romberg sequence, in
which the grid spacing is halved at each refinement. It is, however, more efficient to use a
Bulirsch sequence consisting of two intertwined Romberg sequences (Stoer [36]). Table 1
presents typical grid refinement results for an Oldroyd-B drop with lp=5 and mp=1 using the
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deformation at t0=1 at two different values of the capillary number. Analyzing the conver-
gence behaviour of the deformation, it is found that the method is second-order-accurate in
space for this specific case. Besides a rapid convergence, the method also gives very good
results for relatively coarse grids. Using a similar refinement study for the time step, it is found
that accuracy in time is first-order for the Euler and second-order for the compact storage four
stage Runge–Kutta scheme (Jameson [37]). To provide a way to verify the correctness of the
numerical method, the authors compare their numerical results with theoretical results from
the literature and investigate several limiting cases of the non-Newtonian stress tensor.

The Oldroyd-B model contains three independent parameters, the viscosity ratios l and lp

and the dimensionless relaxation time mp. If either lp or mp approaches zero, an essentially
Newtonian behaviour results [26]. Numerical calculations showed that the limiting behaviour
of the Oldroyd-B drop is correctly recovered. To verify the results for moderate values of lp

and mp, theoretical results obtained by Delaby et al. [38] are used. The theoretical background
for these results is based on the linear theory for viscous emulsions of Oldroyd [12], which has
recently been extended to viscoelastic emulsions by Palierne [14]. This linear theory starts with
the solution to the Stokes equation in terms of an expansion in spherical harmonics [8]. By
approximating the shape interface in terms of spherical harmonics one can use the boundary
conditions of the problem to find the leading order shape correction. The amplitude of this
correction for the radial displacement of the interface, is given by:

A(v)=
5Gd*(19Gd*+16Go*)

(2Gd*+3Go*)(19Gd*+16Go*)+C(Gd*+Go*)
, (4.2)

where Gd* and Go* are the complex moduli of the drop fluid and outer fluid respectively. In case
of an Oldroyd-B drop placed in a viscous fluid, the complex moduli Gd* and Go* are given by:

Gd*= ivl+
ivlp

1+ ivmp

, Go*= iv,

with i the imaginary unit and v the frequency of the oscillations of the external flow. The
amplitude A(v) can also be written in the form:

A(v)=A�
�

1−%
j

Bj

1+ ivmj

�
,

where the coefficients Bj, relaxation times mj of the deformation process and A� are evaluated
numerically for particular values of the parameters. The response of the deformation to an
elongational velocity is then given by:

Table 1. Grid refinement results of the deformation of an Oldroyd-B drop
(lp

(1)=5 and mp
(1)=1) at t0=1 for two different capillary numbers (C (1)=0.01

and 0.1)

Deformation (t=1)Grid

Nc C=0.01 C=0.1Nb

80 0.016311 0.1515216
168 0.016504 0.1526224

0.152990.01656928832
48 624 0.016611 0.15323

0.153300.016625108864
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Figure 3. The deformation of an Oldroyd-B drop at C (1)=0.025 for three values of the relaxation time mp
(1). The

viscosity ratio lp
(1) is kept constant at 5. The dash–dotted, dashed and solid lines represent the analytical results for

mp
(1)=1, 0.25 and 0.0625 respectively. The circles, pluses and asterisks display the corresponding numerical results.

D(t)=
3A�C

4
!�

1−%
j

Bj
�

t+%
j

Bjmj(1−e− t/mj)
"

. (4.3)

Figure 3 shows a plot of expression (4.3) for three values of the relaxation time mp and
lp=5 of the Oldoyd-B fluid and some corresponding numerical results. The numerical
results were generated using a grid with 48 boundary elements and 624 cells in the internal
domain. For small values of the relaxation time of the Oldroyd-B model, the analytical and
numerical results are in good agreement. The steady state deformation of the analytical
solution for small relaxation times of the Oldroyd-B model lies somewhat below the numer-
ically obtained values. Comparison with a second-order theory for viscous drops (Barthès-
Biesel [10]) reveals that the numerically obtained steady state deformation is correct and
that the linear theory slightly underpredicts this deformation. For higher values of mp, there
are some discrepancies between the analytical and numerical results that cannot be ex-
plained by shortcomings in the first-order theory. In this case, the differences are caused by
the non-linear character of the upperconvected time derivative in the constitutive equation
for the Maxwell model. In order to establish this, a simulation performed with a linear
time derivative is considered and it is observed that the numerical and analytical results
were in better agreement. Analyzing this equation, it was observed that the non-linearity
increases with increasing relaxation time of the model, which explains why the discrepancies
increase with increasing relaxation time. The overall agreement, however, is very satisfac-
tory.

The viscoelastic model, given in (2.7), contains two independent parameters, c1 and c2. In
this section, two cases are considered: the viscoelastic I and the viscoelastic II models. To
verify the results, the authors use theoretical results obtained by Roscoe [15] for viscoelastic
spheres. Assuming that the shape of the drop remains ellipsoidal in time, the longest axis
rmax of the drop follows from the following non-linear equations [15]:
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Í
Ã

Ã

Á

Ä

5
4

g2(rmax
2 −rmax

−1 )=
5

2c1

for c2=0,

5
4

g2(rmax−rmax
−2 )=

5
2c2

for c1=0,
(4.4)

where g2 is defined by (Jeffery [16]):

g2=
&�

0

z dz
(rmax

2 +z)(rmax
−1 +z){(rmax

2 +z)(rmax
−1 +z)2}1/2 .

By evaluating g2 numerically for several values of rmax, the relationship between the deforma-
tion D and the constants c1 or c2 can be found, since D can be calculated from rmax, and by
the assumption that the shape remains ellipsoidal and the incompressibility of the fluid. In
Figure 4, the numerical and analytical results for the steady state deformation of a drop
consisting of a viscoelastic I or II material have been plotted. For the numerical calculations,
a grid with 16 boundary elements and 128 cells in the internal domain has been used. For all
values of c1 and c2, the analytical and the numerical results are in very good agreement. Both
models have the same behaviour for small deformations (i.e. large values of c1 or c2) and differ
strongly for large deformations. Especially, the viscoelastic II drop shows strong non-linear
behaviour for larger deformation, which is well-captured by the numerical method.

From this it can be concluded that the method gives correct results for a drop consisting of
an Oldroyd-B fluid or a viscoelastic material. It is also found that the method is capable of
dealing with large deformations and strong non-linear behaviour of the non-Newtonian stress
tensor. The next section concentrates on a drop composed of two layers.

Figure 4. Steady state deformation of a viscoelastic drop with l (1)=1 for a constant value of either c1
(1) or c2

(1). The
solid and dashed lines represent the analytical results for c2

(1)=0 and c1
(1)=0 respectively. The asterisks and circles

display the corresponding numerical results.
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Figure 5. The velocity profile and grid of a double layer viscous drop with l (1)=l (2)=1. The initial thickness of the
outer interface is 0.2 and the capillary number at both interfaces is equal to 0.1. In the lower part of the figure, the

vortices that are present in the outer viscous layer are drawn schematically.

4.2. Double layer non-Newtonian drop

This section presents some simulation results for a drop consisting of two layers of material.
The internal layer V (2) consists of a viscous fluid with l (2)=1 and the outer layer V (1) of the
drop contains a (non-)Newtonian material. At the present moment only analytical results for
a drop where V (2) consists of a viscous or a viscoelastic material are known to the authors. For
this reason, they restrict themselves to these two situations and do not discuss a drop where
V (2) contains an Oldroyd-B fluid, although the method is perfectly suitable for this situation as
well.

As for the single layer drop, attention is first turned to a typical example of a double layer
drop. In Figure 5, the steady state velocity field and grid of a viscous drop with C (1)=C (2)=
0.025 and l (1)=1 is plotted. In the second layer, two vortices are present that are also drawn
schematically in the lower part of the figure. It is seen that these vortices deform the inner
interface in a direction opposite to the deformation of the outer interface. Due to this
mechanism, the layer V (1) is thicker at the tops of the drop and thinner in the middle part of
the drop. Stone and Leal [11] suggest that a contact of the interfaces leads to break-up of the
drop. The steady state deformation of a drop where V (1) consists of a viscoelastic I material
with c1

(1)=80 differs substantially from a viscous drop as can been seen in Figure 6. In this
figure, no velocity field is plotted as it is zero in the steady state situation. Due to the elastic
nature of the material there is almost no variation of the thickness of the layer V (1), and hence
break-up is not caused by contact of the two interfaces. At this moment, a break-up
mechanism based on critical stresses in the viscoelastic layer is developed. Results concerning
this mechanism will be published in the near future.

Using grid refinement it is found that the order of accuracy for the double layer drop is the
same as for the single layer drop, i.e. second-order in space and first- or second-order in time,
depending on the time integration method used. To verify the results for a drop consisting of
two viscous layers, small deformation results obtained by Stone and Leal [11] are used. The
theory leading to these results is based on the work of Taylor [7] for single layer drops and
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Figure 6. The grid of a two layer drop with a viscous (l (1)=1) inner and a viscoelastic outer layer (l (1)=1, c1
(1)=80

and c2
(1)=0). The initial thickness of the outer interface is 0.2.

shows strong resemblance with the theories discussed in the previous section. In this case,
expressions are obtained for the amplitude of the radial displacement of both interfaces from
which the deformation can be derived. In Figure 7 the analytical and numerical steady state
deformation of both interfaces are plotted as a function of the initial shell thickness k (1) at
C=0.025. The numerical results were generated with 32 boundary elements along both

Figure 7. Steady state deformation of a two layer viscous drop with l (1)=l (2)=1 at C (1)=0.025 vs. the initial
interface thickness k (1). The circles and crosses represent the numerically obtained deformations of the inner and outer
interface respectively. The solid and dashed lines display the corresponding analytical results. The steady state

configurations for k (1)=0.1, 0.5 and 0.9 are also contained in the plot.
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Figure 8. Steady state deformation of a two layer drop with a viscous interior l (2)=1 and a viscoelastic (l (1)=1,
c1

(1)=80 and c2
(1)=0) outer layer at C (1)=0.025 vs. the initial interface thickness k (1). The circles and crosses represent

the numerically obtained deformations of the inner and outer interface respectively. The solid and dashed lines display
the corresponding analytical results. The steady state configurations for k (1)=0.1, 0.5 and 0.9 are also contained in

the plot.

interfaces and no internal cells since there is no domain integral present in this particular case.
Also plotted in the figure are the steady state shapes of the drop for three different values of
the thickness k (1). The numerical and analytical results are in excellent agreement for small
deformations with relative deviation below 1% in case k (1)\0.5. For larger deformations, i.e.
smaller k (1), there are some differences that can be explained by the limited validity of the
linear theory. The relative deviation of the numerical results compared with the linear theory
rapidly increases to about 25% as k (1) becomes smaller than about 0.2, and the results show
an overprediction of the deformation by the linear theory. The authors further investigated this
discrepancy and considered the case in which the ratio between the viscous stress and the
surface tension was decreased. This has the effect of reducing the deformation of the
compound Newtonian drop. At smaller deformations, the correspondence between the simula-
tion data and the linear theory indeed improves, which adds to the validation of the present
method. The shapes in this figure clearly show that break-up can already occur for very small
deformations of the outer interface, as was also remarked by Stone and Leal [11].

The results for a drop consisting of a viscous inner layer and a viscoelastic I outer layer are
verified using analytical first-order results by Brunn [5]. In this theory, the Navier–Stokes and
Navier equations are used to describe the displacement fields of the viscous and elastic layer
respectively. The derivation of the amplitude of the radial displacement of both interfaces is
analogous to the theories described above. Figure 8 plots the analytical and numerical results
for the steady state deformation as a function of the initial thickness of the viscoelastic I layer
with c1

(1)=80. In order to keep the aspect ratio of the internal cells limited, different grids for
different values of k (1) (e.g Nb

(1)=Nb
(2)=32, N c

(1)=160 for k (1)=0.1 and Nb
(1)=Nb

(2)=16,
N c

(1)=256 for k (1)=0.9) have been used. Figure 8 also plots the shapes of the drop for several
values of k (1). From these plots it is observed that the interfaces deform uniformly for all k (1).
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It is seen, similar to a completely viscous double layer drop, that the numerical and analytical
results are in good agreement for small deformations. Additional computations that were
performed for higher values of c1

(1) (i.e. smaller deformations) lead to smaller differences at
k (1)=0.1, indicating independently that the discrepancies are due to the limited validity of the
linear theory. This is further illustrated in Figure 9, which compares numerical results for the
steady state deformation of a two layer with linear theory.

From this it can be concluded that the method developed in Sections 2 and 3 gives correct
results for a double layered (non-)Newtonian drop. Also found are very interesting results
concerning the thickness of the outer layer pointing towards essentially different break-up
mechanisms for different composing materials. This will be studied in more detail in the near
future.

5. CONCLUSIONS

In this paper a boundary integral method for axisymmetric multilayered non-Newtonian drops
immersed in a viscous fluid subjected to an axisymmetric flow was presented. The non-Newto-
nian contribution was treated as a source term, leading to a domain integral in the boundary
integral representation of the solution. By transforming the integral representation for the
velocity to cylindrical co-ordinates the authors can reduce the dimension of the computational
problem. The integral equation for the velocity remains of the same form and Green’s
functions are transformed explicitly to cylindrical co-ordinates. Simulations show that the
numerical method developed is second-order-accurate in space and first- or second-order-accu-
rate in time depending on the time integration scheme used.

The numerical results for a single and double layered (non-)Newtonian drop have been
compared with analytical results known from the literature. The time-dependent behaviour of
a single layer Oldroyd-B drop is in good agreement with analytical results for small values of

Figure 9. Steady state deformation of a two layer drop with a viscous interior l (2)=1 and a viscoelastic I outer layer
(l (1)=1, k (1)=0.1) vs. the ratio between the viscous and elastic forces. The circles and asterisks represent the
numerically obtained deformations of the inner and outer interface, respectively. The solid and dashed lines display the

corresponding analytical results.
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the relaxation time (Delaby et al. [38]). For a drop containing an elastic material, the steady
state behaviour was examined. It was found that the numerical and analytical results are in
excellent agreement with each other and that strong non-linear behaviour of the drop is
well-captured by the method. The numerical results for the steady state behaviour of a double
layer drop consisting of a viscous inner layer and a viscous or viscoelastic outer layer is in
good agreement with analytical results. The thickness of a viscous outer layer varies strongly
along the interface, whereas the thickness of a viscoelastic layer remains almost uniform. This
implies that the break-up mechanism due to contact of the interfaces is unlikely to be relevant
for viscoelastic layers. In this case the introduction of a critical break-up stress in the
viscoelastic layer seems a more plausible mechanism. This will be studied in the future.

The boundary integral method developed in this paper is well-suited for compound
non-Newtonian drops although computational times are much longer than in the Newtonian
case due to the domain integral that appears in the formulation. The advantage of the method
over a more direct (finite difference) discretization of the Stokes equations lies in the fact that
only the non-Newtonian layers of the drop have to be discretized and that calculations using
relatively few points already give very accurate results. In case of thin layers the advantages of
the method can be fully exploited since only small part of the total flow domain has to be
discretized. Conversely, the present method is not expected to be very efficient in case large
regions of the flow domain contain non-Newtonian material or if non-linear terms can not be
neglected and the Navier–Stokes equations should be used. In such cases a finite difference or
finite element method may be computationally cheaper. Moreover, if the deformation of
non-Newtonian drops becomes extreme then special attention should be paid to retaining the
grid sufficiently smooth and properly clustered. During extreme deformations the grid may
become too skewed or stretched, which has a negative influence on the accuracy. An
incorporation of dual reciprocity [33], which removes the need to evaluate the domain integrals
with a cell-by-cell integration, may partly resolve these complications and may add to the
efficiency of the method.
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